Observation-infused simulations of high-speed boundary-layer transition

نویسندگان

چکیده

High-speed boundary-layer transition is extremely sensitive to the free-stream disturbances which are often uncertain. This uncertainty compromises predictions of models and simulations. To enhance fidelity simulations, we directly infuse them with available observations. Our methodology general can be adopted any simulation tool, herein demonstrated using direct numerical An ensemble variational (EnVar) optimization performed, whereby determine upstream flow that optimally reproduces The cost functional accounts for our relative confidence in model observations, judicious choice members improves convergence reduces prediction uncertainty. We demonstrate observation-infused at Mach 4.5. Without prior knowledge condition, only observations wall pressure isolated locations from an independent computation (true flow), all relevant inflow identified. then evaluate entire field, beyond original limited interpret simulations consistently data vice versa. predicted compares favorably true `unknown' state, discrepancies analyzed detail. also examine impact weighting Improved inverse problem accuracy amplitudes phases demonstrated, explained by aid a simple example two-dimensional unstable, chaotic convection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary layer transition in high-speed flows due to roughness

Direct numerical simulation (DNS) is used to study the effect of individual (hemispherical) and distributed roughness on supersonic flat plate boundary layers. In both cases, roughness generates a shear layer and counter–rotating pairs of unsteady streamwise vortices. The vortices perturb the shear layer, resulting in trains of hairpin vortices and a highly unsteady flow. Mach 3.37 flow past a ...

متن کامل

High-speed boundary-layer transition induced by a discrete roughness element

Direct numerical simulation (DNS) is used to study laminar to turbulent transition induced by a discrete hemispherical roughness element in a high-speed laminar boundary layer. The simulations are performed under conditions matching the experiments of Danehy et al. (AIAA Paper 2009–394, 2009) for free-stream Mach numbers of 3.37, 5.26 and 8.23. It is observed that the Mach 8.23 flow remains lam...

متن کامل

A Review of Recent Studies on Simulations for Flow around High-Speed Trains

Fluid flow around bluff bodies occurs in numerous fields of science and engineering, such as flows pass vehicles, cables, towers and bridges. These flows have been studied experimentally and numerically for the last several decades. The investigation of flow around high-speed trains is an important application of bluff bodies. Fluid flow, aerodynamic forces and moments, separation and wake regi...

متن کامل

Helical modes in boundary layer transition

Observations are presented to show that in an adverse pressure gradient boundary layer, beneath free-stream turbulence, the interaction between Klebanoff streaks and naturally arising instability waves leads to helical disturbances which break down to form turbulent spots. This occurs under low to moderate levels, 1%–2%, of free-stream turbulence. At high levels of free-stream turbulence, conve...

متن کامل

Delaying transition in rotating boundary-layer flows

We investigate both the type I and II modes of stationary instability within the boundarylayer flow over a rotating disk. Extending the work of previous studies we find that the flow can be stabilised via the introduction of shear-thinning non-Newtonian fluids. Laminar-flow profiles are determined from a generalised von Kármán similarity solution. An asymptotic study is presented in the limit o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fluid Mechanics

سال: 2021

ISSN: ['0022-1120', '1469-7645']

DOI: https://doi.org/10.1017/jfm.2021.172